Главная » 2015 Апрель 6 » Контрольная работа по геометрии 10 класс 3 четверть фгос
09:32 Контрольная работа по геометрии 10 класс 3 четверть фгос | |
Контрольная работа № 1
1 вариант 1). Основание АD трапеции АВСD лежит в плоскости α. Через точки В и С проведены параллельные прямые, пересекающие плоскость α в точках Е и F соответственно. а). Каково взаимное расположение прямых ЕF и АВ? б). Чему равен угол между прямыми ЕF и АВ, если АВС = 1500? Ответ обоснуйте. 2). Дан пространственный четырехугольник АВСD, в котором диагонали АС и ВD равны. Середины сторон этого четырехугольника соединены последовательно отрезками. а). Выполните рисунок к задаче; б). Докажите, что полученный четырех – угольник – ромб. 2 вариант 1). Треугольники АВС и АDС лежат в разных плоскостях и имеют общую сторону АС. Точка Р – середина стороны АD, точка К – середина DС. а). Каково взаимное расположение прямых РК и АВ? б). Чему равен угол между прямыми РК и АВ, если АВС = 400 и ВСА = 80? Ответ обоснуйте. 2). Дан пространственный четырехугольник АВСD, М и N – середины сторон АВ и ВС соответственно, Е СD, К D, DА : ЕС = 1 : 2, DК : КА = 1 : 2. а). Выполните рисунок к задаче; б). докажите, что четырехугольник МNЕК – трапеция. Контрольная работа № 2 1 вариант 1). Прямые a и b лежат в параллельных плоскостях α и β. Могут ли эти прямые быть: а). Параллельными; б). Скрещивающимися? Сделайте рисунок для каждого возможного случая. 2). Через точку О, лежащую между параллельными плоскостями α и β, проведены прямые l и m. Прямая l пересекает плоскости α и β в точках А1 и А2 соответственно, прямая m – в точках В1 и В2. Найдите длину отрезка А2В2, если А1В1 = 12 см, В1О : ОВ2 = 3 : 4. 3). Изобразите параллелепипед ABCDA1B1C1D1 и постройте его сечение плоскостью, проходящей через точки M, N и K, являющиеся серединами ребер АВ, ВС и DD1. 2 вариант 1). Прямые a и b лежат в пересекающихся плоскостях α и β. Могут ли эти прямые быть: а). Параллельными; б). Скрещивающимися? Сделайте рисунок для каждого возможного случая. 2). Через точку О, не лежащую между параллельными плоскостями α и β, проведены прямые l и m. Прямая l пересекает плоскости α и β в точках А1 и А2 соответственно, прямая m – в точках В1 и В2. Найдите длину отрезка А1В1, если А2В2 = 15 см, ОВ1 : ОВ2 = 3 : 5. 3). Изобразите тетраэдр DABC и постройте его сечение плоскостью, проходящей через точки M и N, являющиеся серединами ребер DC и BC, и точку K, такую, что K DA, АK : KD = 1 : 3. Контрольная работа № 3 1 вариант 1). Диагональ куба равна 6 см. Найдите: а). Ребро куба; б). Косинус угла между диагональю куба и плоскостью одной из его граней. 2). Сторона АВ ромба ABCD равна a, один из углов равен 60°. Через сторону АВ проведена плоскость α на расстоянии от точки D. а). Найдите расстояние от точки С до плоскости α; б). Покажите на рисунке линейный угол двугранного угла DABM, М α. в) Найдите синус угла между плоскостью ромба и плоскостью α. 2 вариант 1). Основанием прямоугольного параллелепипеда служит квадрат, диагональ параллелепипеда равна см, а его измерения относятся как 1:1:2. Найдите: а). Измерения параллелепипеда; б). Синус угла между диагональю параллеле – пипеда и плоскостью его основания. 2). Сторона квадрата ABCD равна а. Через сторону AD проведена плоскость α на расстоянии от точки В. а). Найдите расстояние от точки С до плоскости α. б). Покажите на рисунке линейный угол двугранного угла BADM, М α. в). Найдите синус угла между плоскостью квадрата и плоскостью α. Контрольная работа № 4 1 вариант 1). Основанием пирамиды DABC является правильный треугольник АВС, сторона которого равна а. Ребро DA перпендикулярно к плоскости АВС, а плоскость DBC составляет с плоскостью АВС угол в 30°. Найдите площадь боковой поверхности пирамиды. 2). Основанием прямого параллелепипеда ABCDA1B1C1D1 является ромб ABCD, сторона которого равна а и угол равен 60°. Плоскость AD1C1 составляет с плоскостью основания угол в 60°. Найдите: а) высоту ромба; б) высоту параллелепипеда; в) площадь боковой поверхности параллелепипеда; г) площадь поверхности параллелепипеда. 2 вариант 1). Основанием пирамиды MABCD является квадрат ABCD, ребро MD перпендикулярно к плоскости основания, AD = DM = a. Найдите площадь поверхности пирамиды. 2). Основанием прямого параллелепипеда ABCDA1B1C1D1 является параллелограмм ABCD, стороны которого равны и 2а, острый угол равен 45°. Высота параллелепипеда равна меньшей высоте параллелограмма. Найдите: а). меньшую высоту параллелограмма; б). угол между плоскостью АВС1 и плоскостью основания; в). площадь боковой поверхности параллелепипеда; г). площадь поверхности параллелепипеда. | |
|
Всего комментариев: 0 | |